Qdrant
Vector database for AI embeddings
Qdrant provides vector storage and similarity search for AI applications and document embeddings.
Overview
- Port: 6333 (HTTP), 6334 (gRPC)
- Image:
qdrant/qdrant:latest
- Purpose: Vector embeddings and similarity search
- Status: Enabled by default
Configuration
Default Settings
ENABLE_QDRANT=yes
Access
- Web UI: http://localhost:6333/dashboard
- API: http://localhost:6333
- gRPC: localhost:6334
Usage
Services Using Qdrant
- Flowise: Document embeddings for RAG
- ElizaOS: Memory and context search
- Custom AI: Vector similarity search
Basic Operations
# Check collections
curl http://localhost:6333/collections
# Create collection
curl -X PUT http://localhost:6333/collections/documents \
-H "Content-Type: application/json" \
-d '{"vectors": {"size": 1536, "distance": "Cosine"}}'
Troubleshooting
Connection Issues
# Check service status
curl http://localhost:6333/health
# View logs
docker logs seiling-qdrant --tail=50
Storage Issues
# Check collection info
curl http://localhost:6333/collections/documents
# Delete collection if needed
curl -X DELETE http://localhost:6333/collections/documents
Qdrant enables semantic search and AI memory. Essential for RAG applications.